Real-time forecasting of solar irradiance ramps with smart image processing
نویسندگان
چکیده
We develop a standalone, real-time solar forecasting computational platform to predict one minute averaged solar irradiance ramps ten minutes in advance. This platform integrates cloud tracking techniques using a low-cost fisheye network camera and artificial neural network (ANN) algorithms, where the former is used to introduce exogenous inputs and the latter is used to predict solar irradiance ramps. We train and validate the forecasting methodology with measured irradiance and sky imaging data collected for a six-month period, and apply it operationally to forecast both global horizontal irradiance and direct normal irradiance at two separate locations characterized by different micro-climates (coastal and continental) in California. The performance of the operational forecasts is assessed in terms of common statistical metrics, and also in terms of three proposed ramp metrics, used to assess the quality of ramp predictions. Results show that the forecasting platform proposed in this work outperforms the reference persistence model for both locations. 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Short-term irradiance forecastability for various solar micro-climates
The purpose of this work is to present a simple global solar irradiance forecasting framework based on the optimization of the k-nearest-neighbors (kNN) and artificial neural networks algorithms (ANN) for time horizons ranging from 15 min to 2 h. We apply the proposed forecasting models to irradiance from five locations and assessed the impact of different micro-climates on forecasting performa...
متن کاملHybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning
We propose novel smart forecasting models for Direct Normal Irradiance (DNI) that combine sky image processing with Artificial Neural Network (ANN) optimization schemes. The forecasting models, which were developed for over 6 months of intra-minute imaging and irradiance measurements, are used to predict 1 min average DNI for specific time horizons of 5 and 10 min. We discuss optimal models for...
متن کاملHybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs
This work describes a new hybrid method that combines information from processed satellite images with Artificial Neural Networks (ANNs) for predicting global horizontal irradiance (GHI) at temporal horizons of 30, 60, 90, and 120 min. The forecast model is applied to GHI data gathered from two distinct locations (Davis and Merced) that represent well the geographical distribution of solar irra...
متن کاملIntra-hour DNI forecasting based on cloud tracking image analysis
We describe an image processing methodology using Total Sky Imagers (TSIs) to generate short-term forecasts of Direct Normal Irradiance (DNI) at the ground level. Specifically, we are interested in forecasting 1-min averaged DNI values for time horizons varying from 3 to 15 min. This work describes several sky image processing techniques relevant to solar forecasting, including velocity field c...
متن کاملShort term forecasting of solar radiation based on satellite data
Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance have a significant influence on electric power generation by solar energy systems. An efficient use of solar energy conversion processes has to account for this behaviour with respective operating strategies. Examp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015